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Chapter 1 

Introduction and Overview 

This final report contains a summary of the activities supported under the Air Force AFOSR 
AASERT grant F49620-97-1-0356. This grant supported two graduate students, Lisa Stanley and 
Kevin Hulsing, to work with Professor John A. Burns (currently supported under AFOSR PRET 
Grant F49620-96-1-0329) on computational methods for optimal design and control of aerospace 
systems. In addition, the grant provided partial support for Major Dawn Stewart who completed 
her Ph.D at Virginia Tech. The research is based on our current work on mathematical and com- 
putational methods for sensitivity analysis and on new controller reduction methods for systems 
governed by partial differential equations. This work is fully described in the proposal "Sensitivity 
and Adjoint Methods for Design of Aerospace Systems" (this proposal resulted in the AFOSR PRET 
grant). The focus of this project is fundamental research in sensitivity based methods for optimal 
design and in computational methods for practical distributed parameter control. A major goal of 
this effort is to insure the transition of this work into Air Force and industrial applications. The 
research conducted by the AASERT students is motivated by the need to develop accurate solvers 
for sensitivity equations and to develop computational tools for controller reduction in 2D and 3D 
physics based models. The principal investigator is Dr. John A. Burns, Director of the Center for 
Optimal Design and Control and Hatcher Professor of Mathematics at Virginia Tech. 

The AASERTstudents worked within the PRET Center at Virginia Tech. Research under the 
PRET Grant is conducted at six institutions: Virginia Tech, Cornell, AeroSoft, Beam Technologies, 
Boeing and Lockheed Martin. Frequent meetings of the team, exchange of visits, sharing of software, 
exchange of graduate students and postdoctoral researchers, industry-Air Force laboratory-university 
workshops and communication of results are coordinated by the Center. 

The PRET Center offers an unparalleled potential for strengthening the educational and scien- 
tific infrastructure by training students and post-doctoral researchers in an interdisciplinary team 
approach to scientific and engineering research. The Center provides unique opportunities for the- 
oretical, computational, and experimental research. Through the interactions with Air Force labo- 
ratories and industrial partners, students are exposed to real problems. The combined theoretical, 
computational, and experimental approach provides a meaningful interdisciplinary research experi- 
ence. 

The AASERT students played an integral role in the transition of research into industry and Air 
Force laboratories. 



Chapter 2 

Objectives 

This ASSERT grant was designed to support the PRET program through the support of graduate 
students and their research. In addition to conducting basic research, these students played an 
integral role in the development of computational tools and in the transitioning of these tools to 
industry and Air Force laboratories. 

2.1 Research Objectives 

Although the PRET proposal contains several research objectives and the AASERT students are 
involved in several aspects of these projects, the AASERT students focused on two specific tasks 
with the following research objectives. 

• The development of fast and accurate computational methods for sensitivity anal- 
ysis. Sensitivity analysis plays a central role in optimal design as well as in the development 
of fast simulation algorithms. The goal of this effort was to improve the accuracy and effi- 
ciency in sensitivity computations by using adaptivity and smoothing methods. In addition, 
the method of mappings was investigated in order to improve accuracy. 

• The development of computational tools specifically for control design of dis- 
tributed parameter systems. The goal here is to develop practical computational tools 
for sensor/actuator placement and reduced order controller design. This goal was achieved by 
using distributed parameter theory, Chandrasekhar partial differential equations, and repre- 
sentations as a foundation for computational algorithms. 

2.2 Educational Objectives, Interactions and Transitions 

The educational goal of this ASSERT was to train interdisciplinary applied mathematicians, engi- 
neers and scientists to work on industrial problems of importance to the Air Force. This goal was 
met through interactions with PRET partners and the corresponding transition of research into 
these industries. In particular, we had the following specific educational objectives: 

• To develop an active program directed at educating interdisciplinary scientists and 
encouraging these graduates to work at Air Force facilities, laboratories and in- 
dustry. All of the students finished their Ph.D. degrees and are working on research important 
to the Air Force. 

• To transition research and computational tools into industry and Air Force labo- 
ratories. We worked with our PRET partners to test new algorithms on design and control 
applications including (but not limited to) shape optimization and control design for flow 
management and heat transfer. 



Chapter 3 

Status of Effort 

Considerable progress was made toward achieving the all of the proposed research objectives. The 
students developed new computational tools and began the construction of a mathematical frame- 
work that will allow for the analysis of these tools. This effort focused on the difficulties of producing 
practical design and control tools for complex 2D and 3D problems. This report contains a sum- 
mary of new findings and accomplishments (Chapter 4) and the interactions/transitions (Chapter 
7). However, the following items are particularly noteworthy. 

Status of Effort 
During this period, the two students supported under this grant produced 7 scientific papers, 

given more than 10 invited presentations and developed preliminary software packages for design and 
control. In addition, the students made considerable progress on three specific projects: adaptive 
finite element and projection methods for sensitivity computations, mapping techniques for sensitiv- 
ity computations in elliptic systems, and numerical algorithms for computation of functional gains 
for feedback control of thermal processes. 

Ms. Lisa Stanley, working with Major Dawn Stewart (USAF), developed a new algorithm for 
sensitivity calculations that is based on smoothing projections of spatial derivatives. They considered 
both local and global projections and tested the numerical methods on several boundary value 
problems. This work concentrated on projection error techniques for both state and sensitivity 
equations. 

Major Stewart extended these methods to the Navier-Stokes equations and enhanced the per- 
formance of the basic algorithm by employing adaptive mesh generators to improve accuracy. Ms. 
Stanley investigated the method of mappings and used the continuous sensitivity method to produce 
accurate computational schemes. She showed that, if one first derives the sensitivity equation in 
the physical domain and then transforms both state and sensitivity equation to the computational 
domain, then mesh gradients are not needed and the accuracy of computed sensitivities can be con- 
trolled. This work also provides a theoretical framework for the rigorous analysis of the resulting 
algorithms. 

Mr. Kevin Hulsing developed a fast new approach to the problem of computing functional gains 
that define optimal feedback controllers for spatially distributed systems. He derived Chandrasekhar 
partial differential equations for the gains and constructed numerical methods for solving these 
systems. He applied this method to ID and 2D thermal control problems. This approach is based 
on direct solutions of Riccati and Chandrasekhar partial differential equations and allows the use of 
adaptive finite element methods (both p-refinement and h-refinement). In addition, he made use of 
"Nitsche" finite element techniques to enhance accuracy near the boundaries. 



Chapter 4 

Accomplishments and New 
Findings 

This chapter contains a detailed summary of some of the research accomplishments and new findings, 
a brief description of research highlights and their significance to the field. In addition, we indicate 
the relevance of the research to potential Air Force applications and industrial technology challenges. 
In § 4.1 we present the highlights of Ms. Stanley's work on the use of transformations in sensitivity 
computations for elliptic systems. In § 4.2 we discuss Mr. Hulsing's work on numerical methods for 
computing functionsl gains for distributed processes. The following accomplishments are particularly 
important. 

Accomplishment 1: Developed a Method of Mappings Method for Sensitivity Compu- 
tations in Elliptic Boundary Value Problems 

• New Findings: This algorithm is based on first deriving the sensitivity equations in the 
physical domain and then mapping both state and sensitivity equations to the computational 
domain. This approach allows for greater control of errors and eliminates the need to com- 
pute mesh gradients. In particular, these results show that errors in computing geometry 
sensitivities are important, but can be controlled by improving the boundary approximations 
alone. 

• Significance and Potential Applications: Computing sensitivities in aerospace systems 
is fundamental to any design process. For large systems of differential equations, speed and 
accuracy of computation are essential. This work provides insight into the types of errors that 
must be controlled in order to achieve accuracy. In addition, the ability to compute sensitivity 
flow fields in a fraction of the time it takes to solve the basic equations, reduces design cycle 
times and allows the designer to evaluate the model as well as the design. These types of 
problems occur in several Air Force applications. The design and analysis of the COIL laser 
is just one of many such applications we are considering. 

Accomplishment 2: Developed a Chandrasekhar PDE Approach for Computing Func- 
tional Gains for Feedback Control of Thermal Processes 

• New Findings: This method is based on deriving a system of Chandrasekhar type partial 
differential equations that can be solved for the functional gains that define optimal feedback 
laws. The motivation is to develop new computational algorithms that can be applied to 
2D and 3D distributed parameter systems. High order accurate schemes are used to solve 
the resulting system of partial differential equations. This method was applied to a 2D heat 



transfer problem. Even when all other standard methods failed, the Chandrasekhar method 
converged to the gains. Therefore, this work established the feasibility of the approach for 
complex physisc based models. 

• Significance and Potential Applications: In order to use functional gains for sensor/actuator 
placement and reduced order controller design, one first needs accurate approximations to 
these kernel functions. This new method not only improves accuracy, but also can provide 
this accuracy on coarse grids. In addition, the algorithm is highly parallelizable and allows for 
adaptivity. Thus, this type of method is more suitable for 2D and 3D control problems that 
occur in flow control and control of manufacturing processes. 



4.1    Hybrid Transformation Methods for Sensitivity Compu- 
tations 

Sensitivity analysis is an important tool in engineering with applications ranging from optimal design 
to computational fluid dynamics. There are many algorithms available for computing sensitivities. 
These range from automatic differentiation techniques to variational methods. In this section we 
describe two variational methods for computing sensitivities. We use a ID model problem as a 
platform for describing and comparing these methods. In particular, the regularity of the sensitivity 
equations obtained from each method is addressed. Numerical approximations to each sensitivity 
are calculated using finite element schemes, and numerical comparisons are presented. 

4.1.1 Introduction 

Accurate sensitivity calculations play an important role in the analysis and optimization of engi- 
neering systems. Sensitivities can be used to compute gradients in optimization-based design. In 
addition, they have been used to construct fast solvers for computational fluid dynamics. In this sec- 
tion, we focus on variational methods for computing state sensitivities. These schemes make use of 
sensitivity equation methods. However, there are a variety of ways to implement sensitivity equation 
methods, and these variations yield algorithms with different convergence properties. We consider 
two specific methods. The first is based on transforming the state equation to a fixed computational 
domain and then deriving its sensitivity equation. Once the state and sensitivity systems are solved, 
the solutions are mapped back to the physical domain. The second approach transforms both state 
and sensitivity equations, solves the transformed equations and maps these solutions back to the 
physical domain. There are benefits and drawbacks to each method. Indeed, it is not always obvious 
which scheme is best for a given problem. Many questions need to be addressed before a complete 
theory can be developed. In the discussion below, we will describe a simple ID example in order to 
illustrate the methods and to motivate some of these questions. We begin with a description of the 
model problem. Each of the variational methods will be described in the context of the example, 
and numerical results will be presented. Finally, we will compare the performance of these methods 
and make some concluding remarks concerning future work. 

4.1.2 Notation 

Before describing the variational methods, we define the transformations used to move between the 
physical and the computational domains. Some notation regarding Sobolev spaces is also introduced. 
The "physical domain" for the model problem is the interval (0,q), where q is a parameter with 
q G (1,2). The computational domain is the unit interval (0,1). For a > 0, let fiQ = (0,a), and 
for each fixed q € (1,2) define the transformation T : ft, -4 fti by T(x,q) = | = f. Note that the 
function M: fti -> Qq defined by M(f) = £q = x is the inverse of T and is commonly referred to as 
the "mesh map". 

Let Hm(fli) denote the usual Sobolev space of "functions" whose partial derivatives, up to order 
m, are also square integrable. Let L2 = L2(Cli) with inner product defined by 

{u,v)= /   u 
Jo 

(u,v)= /   «fcMflde 
Jo 

for all u(-),v(-) € L2. For this study, we need only to consider V = #o(fii) C H1^), where V 
consists of functions in F1(fti) with zero trace. The dual space of V is given by V* = i7_1(fl1). 
Finally, we need the bilinear form o: V x V -*• E by 

a(<t>,v)= ( <t>'{ 
Jo 

'(ZWiOdt (4.1.1) 
JO 

farall#-),i?(0€V. 



4.1.3 A Model Problem 

In this section, a ID model problem is introduced. This example is convenient for numerical com- 
parisons since both the state and the sensitivity equations have analytical solutions. The model 
problem is structured so that the physical domain is parameter dependent. 

Let 1 < q < 2, and consider the state equation given by the following elliptic boundary value 
problem 

-w"{x) = f(x),    x&(0,q) (4.1.2) 

with boundary conditions 

w(0) = 0,    w{q) = 0. (4.1.3) 

Here / : (0, +00) -» E is the piecewise continuous function given by 

The parameter q determines the length of the interval over which the state is defined. The goals are 
to solve (4.1.2)-(4.1.3) for the state, w(x,q), for a given value of q and to determine the sensitivity 
of the state to small changes in the parameter. The sensitivity is denoted 

s(x, q) = dqw(x, q). (4.1.5) 

For this example, the state and sensitivity are given by 

/     N      f -
ia^-x, 0<x<l lt    rt 

I  -^-x+\{x-l)2,    \<x<q 

and 

(£zi), 
2g2 

respectively. However, we proceed to solve for both the state and the sensitivity numerically using 
each of the methods previously mentioned. Comparing the numerical calculations to (4.1.6)-(4.1.7) 
allows one to quantitatively measure the usefulness and accuracy of the methods. Note that for a 
fixed q > 1, the function x -¥ w(x,q) belongs to H2(0,q) D #o(0, g). However, d^w{x,q) is discon- 
tinuous, while the sensitivity function, x -> s(x, q) is C°°. Having defined the relevant equations 
and unknowns, we will now use (4.1.2)-(4.1.3) to describe two methods for computing numerical 
approximations to s(x,q). 

4.1.4 Methods for Computing the Sensitivity 

For many engineering applications, a typical approach to such problems is to begin by transform- 
ing the problem to a fixed "computational domain". This "computational domain" is often more 
regular in shape which simplifies grid generation and can improve the accuracy of numerical calcu- 
lations. This technique is especially common for problems in computational fluid dynamics and for 
many problems involving moving boundaries such as shape optimization. The transformations can 
be performed at the infinite dimensional level as long as the mappings are isomorphisms and are 
sufficiently smooth in comparison to the regularity of the solution to the PDE in question. Both 
methods considered here make use of these transformations. It is important to note that in 2D 
and 3D problems, transforming can be a complex process. In particular, in addition to problems 
of regularity, it is important to consider accuracy loss. For example, transformations that produce 
coordinate systems that are orthogonal at boundaries are preferred. Otherwise, accuracy decreases 
as orthogonality declines. For the ID example here, it is straightforward. Some of the difficulties 
that occur in 2D and 3D problems are not present in this case. In particular, this step often requires 
numerical approximations of the mapping and its spatial derivatives. More about this issue will be 
discussed in the conclusion. 

4?) = "^,    xe(0,q), (4.1.7) 



4.1.5    Two Approaches for Sensitivity Calculation 

Beginning with the state equation denned on the physical domain, one can implicitly differentiate 
the state (4.1.2)-(4.1.3) in order to obtain a sensitivity equation. At this stage, it is important 
to note that this differentiation is rather formal. In general, the partial derivatives d^.w{x, q) and 
dqiv(x, q) need to be continuous in order to interchange the order of differentiation. In this case 
dlw(x,q) is discontinuous, but one can verify by hand that the sensitivity dqw(x,q) satisfies the 
following differential equation 

-s"(x) =0,    0 < x < q (4.1.8) 

with boundary conditions 

s(0) = 0,    s(q) = -dxw(q) = -dxw(x) (4.1.9) 
x=g 

System (4.1.8)-(4.1.9) is called the sensitivity equation. The boundary conditions should be derived 
with care as the right endpoint of the domain (0, q) depends explicitly on the parameter q. 

Once the sensitivity equation has been derived on the physical domain, the transformations in 
Section 4.1.2 are used to define the "transformed" functions. For £ G Qi and q G (1,2), define 

w({,q) =w(M(£,q),q) = w(x,q), 

s(£, q) = s(M(£, q), q) = s(x, q) (4.1.10) 

and 

At,q) = HM(ti,q),q) = m- (4.1.11) 

Once transformed, the original forcing function / becomes 

'«■•>-{-i, ?«<! <4'"2> 
and now depends explicitly on the parameter q. Using the above definitions and the chain rule, the 
spatial derivatives of the original functions and those of the transformed functions are related by 

dxw(x,q)    =    diw(T(x,q),q)-dxT(x,q) 

=   dsw(Z,q)-- (4-1.13) 

and 

d2
xw(x,q)    =    d*w(T(x,q),q)-[dxT(x,q)Y + 

%iD(r(a:,g),?).^r(x,g) 
1 

q 
-    d\w{Z,q)~. (4.1.14) 

These identities are used to derive transformed boundary value problems for both the transformed 
state and the transformed sensitivity in (4.1.10). The transformed state equation is defined by the 
differential equation 

with boundary conditions 

-*>"(0 = q2mq),    £G(0,1), (4.1.15) 

w(0) = 0,    u>(l) = 0. (4.1.16) 



Likewise, the transformed sensitivity equation is given by the differential equation 

-*"(0=O,    £€(0,1),   . (4.1.17) 

with boundary conditions 

5(0) = 0,    1(1) = " Q) • W) = -(£)• 9«™ (0 (4.1.18) 

Using (4.1.6) and (4.1.7), the solutions to the transformed state and sensitivity equations are given 
by 

r -(g-1)2^ o<£<i 

«<•«>-{ .fc&V*^, j<f<i <4119> 
and 

$(£,<?) = -^5-^,    0<e<l, (4.1.20) 
2(7 

respectively. 
Before describing the variational formulations and the discretization, we will discuss an alter- 

nate approach. The process we outline in the following paragraphs varies from the one previously 
described in the order in which the sensitivity equation is derived and the transformations are 
performed. 

A second approach to the computation of the sensitivity is similar in spirit to the Semi-Analytical 
method (SAM). This technique is often used in the engineering community. Roughly speaking, the 
SAM begins by first transforming the state equation to the computational domain. The second step 
is to discretize the state equation, thereby producing an algebraic system. This discrete equation is 
then differentiated to obtain a discrete sensitivity equation which is solved using special techniques. 
An abstract version of this method (A-SAM) may be constructed by deriving a sensitivity equation 
after transforming but before discretizing the state equation. In particular, the infinite dimensional 
transformed state equation is "differentiated" in order to obtain an equation for the sensitivity of 
the transformed state. We now present the details of this approach. 

On the computational domain, fix, define the sensitivity of the transformed state by p(f, q) = 
dqw(£,q). In order to derive a system for p(£,q), the transformed state equation (4.1.15)-(4.1.16) is 
"differentiated" with respect to q. This requires that the function /(£, q) be "differentiated" with 
respect to q as well. As before, formal differentiation yields the boundary value problem 

-dlp(t,q)=g(S,q), (4.1.21) 
p(0)=0,    p(l)=0, (4.1.22) 

where g(£,q) = 2qf(£,q) + q2dqf(£,q) belongs to V*. In particular, 

9(Z,q) = 2qm,q)-öi-(0, (4.1.23) 

where 5i (f) is the delta function with mass at ^   Since the linear elliptic problem (4.1.21)-(4.1.22) 
does not have H2(fli) solutions, the system must be considered in the weak sense.  We use this 
system to derive a weak formulation in Section 4.1.6. 

For this example, p(£,q) can be calculated directly from (4.1.19) to obtain 

10 



Clearly, dqw(x, q) = s(£, q) ^ p(£, q). In particular, we observe that the sensitivity of the transformed 
state, p(£,q), is less smooth than the transformed sensitivity s(£,q) in (4.1.20). Furthermore, the 
relationship between the transformed sensitivity and the sensitivity of the transformed state can be 
derived using (4.1.13)-(4.1.14) and the chain rule. Beginning with the definition of the sensitivity of 
the transformed state, it follows that 

p(Z,q)  =  dqw(Z,q) 
= dqw(M(£,q),q) 

= dqw(M(£, ?),«)+ dxw(M(£, q), q) [dgM{t, q)] 
= s(M(£, q), q) + dM*, 9) [dgM(Z, q)] 

= «tf, q) + [dxT(x, q)] $t&(& q) [dgM{Z, q)] 

= s(t,q) + [diM(Z,q)]-1diw(t,q)[dqM(Z,q)]. 

The relationship between s(x, q) and p(£, q) can be obtained by using (4.1.10) and the definition of 
the transformation T. Direct computation yields 

s(x,q) = p(-,q) - d<:w(-,q) deM^q) 
l-i 

dqM(-,q) (4.1.25) 

Observe the appearance of the "mesh derivative", dqM(£, q), and the spatial derivative of w(£,q) in 
this equation. In order to calculate s(x, q) using this (A-SAM) approach, one needs to compute not 
only the sensitivity of the transformed state but also the spatial derivative of the transformed state 
and the mesh derivative. For this example, dqM(£, q) is easily accessible. However, for 2D and 3D 
problems, these maps are constructed using numerical algorithms, and obtaining derivatives of the 
maps can be very difficult. Using the preceding definitions, we define two methods for computing 
the sensitivity s(x,q). 

Hybrid-Sensitivity Equation Method (H-SEM) 

Step 1. Solve the transformed state equation (4.1.15)-(4.1.16) for w(£,q). 

Step 2. Solve the transformed sensitivity equation (4.1.17)-(4.1.18) for s(£, q). 

Step 3. Map s(£, q) back to the physical domain to obtain the sensitivity by 

s(x,q) = s(T(x,q),q). 

Abstract-Semi Analytical Method (A-SAM) 

Step 1. Solve the transformed state equation (4.1.15)-(4.1.16) for w(£,q). 

Step 2. Solve (4.1.21)-(4.1.22) for the sensitivity of the transformed state p(£,q). 

Step 3. Map p(£, q) back to the physical domain to obtain the sensitivity using 

X X 
s(x,q) = p(-,q) - d(:w(-,q) ^M(|,g) 

-l 

dqM(^,q) 

Differences in the regularity of the sensitivity equations have already been noted. We want 
to examine the effect of these differences on numerical approximations of the sensitivities. The 
following sections explore some computational issues that are relevant to each method. Variational 
formulations are described, and a brief section outlining the discretization is presented. 

11 



4.1.6    Variational Formulations 
We begin by considering the transformed state equation in (4.1.15)-(4.1.16). Multiplying by an 
arbitrary function 77 G V and integrating by parts, we have the following integral equation 

/ * Wm = q2 f1 HtMOdt       V n G V. (4.1.26) 
Jo Jo 

This equation, along with the bilinear form and X2-inner product denned in Section 4.1.2, produces 
the variational form of (4.1.15)-(4.1.16). In particular, (4.1.15)-(4.1.16) is equivalent to the following 
variational equation. Find w(-) G V such that 

a(w,T)) = q2{f(;q),r,(-)) (4.1.27) 

for all ??(•) G V. 
We now turn to the transformed sensitivity equation. Note that the boundary conditions (4.1.18) 

are nonhomogeneous. In order to simplify notation, we denote the right boundary condition of 
(4.1.18) by 7 = —d^w(l). If s*(f, q) is defined by the function 

«*(*.?) = 76 (4-1.28) 

then s*(£,q) G if^fii) and s*(£,q) satisfies the boundary conditions s*(0) = 0 and s*(l) = 7. It 
follows that v(£,q) = s(£,q) — s*(£,q) belongs to V and solves the differential equation 

-«"(&?) = 0 (4-1.29) 

with homogeneous Dirichlet boundary conditions 

v(0,q)=0    v(l,q) = 0. (4.1.30) 

The corresponding variational equation is defined in V. Find v(-) G V such that 

a(v,ri) = 0 (4.1.31) 

for all Tj(-) G V. Once v(£, q) is computed, the transformed sensitivity s(£, q) is recovered using the 
relationship s{£,,q) = v(£,q) + s*(£,q). 

We now derive the variational problem involving the sensitivity of the transformed state, p(£, q). 
As noted in Section 4.1.5, the system in (4.1.21)-(4.1.22) must be interpreted in the space V*. That 
is, the following equation holds 

I'p'(tW(Od£    =    2q f'f&qMOdt- f's^MOdt 
Jo Jo Jo    ' 

=    2?/ f(£,q)ri(t)dt-r,(h (4.1.32) 
Jo 1 

for all T)(-) G V. Define the linear functional lq G V* by 

lg(ri) = 2q(f,r1)-SL(r1) (4.1.33) 

for all TJ(-) G V. It follows that equation (4.1.32) is equivalent to the following variational problem. 
Find p(-) G V so that 

a(p,ri) = IM (4.1.34) 

for all IJ(.) G V. 

12 



Before turning to numerical issues, we note that this example falls within a general framework 
that provides the basic existence, uniqueness and differentiability of the transformed state equation. 
Observe that the variational problem (4.1.27) has the form 

Aw = F(q)    inV*. (4.1.35) 

where A: V -> V* and F: E -+ V* are defined by 

[Au](v) = a(u, v)       V v G V (4.1.36) 

and 

|F(?)](w)=92</(-> ?),«(•)>       V«€V, (4.1.37) 

respectively. If one defines the function G: V x E ->■ V* by 

G(t&, g) = ./to) - F(?), (4.1.38) 

then the following result provides the theoretical foundation for the numerical methods presented 
below. 

Theorem 4.1.1. If q £ (1>2), then G(w,q) = 0 has a unique solution w = w(-,q). Moreover, 
P('>Q) = dqw(-,q) exists and is the unique solution to the sensitivity equation (in V*) 

Ap - dqF(q) = 0. (4.1.39) 

The proof of Theorem 4.1.1 follows easily from the implicit function theorem. In particular, one 
can show that the strong Frechet derivatives dwG(w,q) and dqG(w,q) exist and are given by 

B*G(w,q) = A, (4.1.40) 

and 

8qG(w, q) = -dqF(q) = -/,(•), (4.1.41) 

where lq(-) is defined by (4.1.33). Observe that the sensitivity equation (4.1.39) is equivalent to the 
variational problem (4.1.34). 

Although the framework defined by (4.1.35) - (4.1.39) is suitable for many elliptic problems, 
it is not sufficient for more general shape sensitivity problems. For example, the classical elliptic 
interface problem requires a more general theory. We now move to the numerical approximation 
of the solutions to the variational problems. The following section describes the appropriate finite 
element spaces for approximating the transformed state, w(£,q), the transformed sensitivity, s(£,q) 
and the sensitivity of the transformed state, p(£,q). 

Discretization 

For the finite element approximation of the variational equations, we begin by constructing the 
grid. Note that the function f(£,q) is discontinuous at the point £ = i in the computational 
domain. Hence, a grid point of the mesh is placed at that point. We partition the domain fli into 
subintervals (£,-,£,+i) where 0 = & <&<■••<& = j <*■•< frr < &v+i = 1. We choose 
the finite dimensional subspace of V to be the space spanned by N piecewise linear basis functions 
denoted 

VN = M-) G V : V(0 = E cjhM)}, (4.1.42) 
3=1 
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where hj(£) is the standard continuous piecewise linear basis function. 
For the computations presented in the following sections, we use the partition of ßi developed 

above for both state and sensitivity approximations. Hence, the mesh (£,-, £j+i), for j = 0,1,...N 
is used to calculate approximations to w(£, q), u(£) and p(£, q). The function v(£) is approximated 
in the same manner as the transformed state. In particular, we let 

N 

t&"(0 = J>iM0> (4.1-43) 

N 

p"(£,<7) = £WO (4-1.44) 
i=i 

and 
TV 

A0 = £/W0 (4-1.45) 
i=i 

be finite element approximations of w(£,q), p(£,q) and u(£), respectively. Once vN(£) has been 
obtained, we compute the approximation of the transformed sensitivity using 

*Jrtt.?) = Aö + 7Ar{. (4-1.46) 
where iN is the approximation to j = —d^w(l,q) given by 

7" = — 0^(1,5). (4.1.47) 

Note that the subscript notation used on s#(£,g) refers to the use of the H-SEM approach for the 
sensitivity calculation. 

Remark: The use of 7^ for 7 introduces error into s#(£, q) that is independent of the error in 
vN(€i<l)- However, this error significantly affects the accuracy of s(£,q), and eventually, that of 
s(x,q). It is also noteworthy that even though the weak form of (4.1.34) does not require spatial 
information about w(£), the spatial derivative d^w(^) is required to reconstruct s(x,q) through 
(4.1.25). These issues play an important role in the numerical results presented in Section 4.1.7. 

4.1.7    Numerical Results 

In this section, we present numerical approximations to w(x, q) and s(x, q) using the methods de- 
scribed in the previous section. We compare numerical approximations of s(x, q) that result from 
implementing each of the methods discussed in Section 4.1.5. In particular, we compare results 
obtained using H-SEM with those of the A-SAM. 

State Approximations 

All computations presented use the same grids for both sensitivity approximations. It is important 
to recall that a node is placed at f = |. Figure 4.1.1 shows the finite element approximations 
to wN(£, 1.5) for various values of N. These approximations converge rapidly. Similar behavior 
is observed over a range of parameter values. The corresponding approximations to wN(x, 1.5), 
obtained by transforming the finite element approximation, wN(£,q), back to the physical domain, 
are shown in Figure 4.1.2. Comparing Figures 4.1.1 and 4.1.2, one can see that convergence of the 
approximations is preserved under the transformation T. 

Figure 4.1.3 shows the Hterror in w(x,q) for values of q between 1.1 to 1.9. The values of N 
range from 3 to 33 and are indicated in the legend. Note that the rate of convergence is better for 
q -¥ 1 as the quadratic term (see (4.1.19)) in the transformed state becomes less dominant. 
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Figure 4.1.3: iif1-Error of wN(x) for q ranging from 1.1 to 1.9 

Hybrid Sensitivity Equation Method 

In this section, we present sensitivity calculations obtained by applying the H-SEM algorithm. 
Figure 4.1.4 shows the convergence of the finite element approximations to s^, 1.5). Observe that 
the entire error results from the approximation of 7 = ^-d£u)(l,g) by jN = ^c^io^l,«/). Since 
the transformation T is smooth, the only error in s# (x, 1.5) is due to this approximation. Figure 
4.1.5 shows the convergence of s^(x, 1.5) to s(x, 1.5). 

Recall that wN(£) is a piecewise linear approximation. Thus, the finite element spatial derivative 
is a piecewise constant function. This function is used to approximate the spatial derivative at the 
right boundary point £ = 1. Figure 4.1.6 shows a piecewise constant approximation used to obtain 
an approximate boundary condition 7^. Hence, the error in d^w(l) results in sensitivity errors that 
can be attributed to the poor approximation of this boundary condition. There are techniques which 
can be used to obtain better approximations to the spatial derivative along the boundary. Higher 
order elements can be used in the transformed state calculation, but this can be costly for 2D and 
3D problems. As an alternative, projection techniques have been developed to enhance the accuracy 
of the spatial derivative for nominal expense. We move to the A-SAM. 

Abstract Semi-Analytical Method 

We turn our attention to numerical results obtained by using the A-SAM algorithm for sensitivity 
calculations. First, note that s%(x) is constructed from pN(^, q) and dxw

N(£) using the relationship. 

s%(x,q)=p»£,q)-U)diw
N£,q). 

q \9 / Q 
(4.1.48) 

Note that we use the subscript A for the sensitivity approximation obtained using the A-SAM 
approach. The finite element approximations to p(£, 1.5) are shown in Figure 4.1.7 for various 
values of N. Since the sensitivity equations are linear, the approximations pN(£, 1.5) converge as 
expected. When constructing s%(x, 1.5) from (4.1.48), the piecewise constant approximation of 
dxw

N(£) produces discontinuities in s%(x) as shown in Figure (4.1.8). These discontinuities occur 
at points of the physical domain which correspond to mesh nodes of the computational domain lying 
in the interval [^, 1). Note that the expressions for the mesh derivatives in (4.1.48) are "hard-wired", 
continuous functions, and the finite element approximations to p(£, q) are continuous. It follows that 
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Figure 4.1.6: Approximation of dxw(£, 1.5) with N = 3 
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Figure 4.1.7: Finite Element Approximations to p(£, 1.5) 

||s(x,g) — s^(x,q)\\i,2 -> 0 as N ->• oo. However, one does not get convergence in the energy (Hfj) 
norm since dxs^(x,q) is not in V. 

4.1.8    Conclusion 

Each of the methods described above present computational challenges. The Hybrid SEM requires 
gradient information along the boundary of the computational domain. Even in the ID example, this 
information becomes critical to accurate sensitivity calculations. Approximating gradients along the 
boundary only gets more challenging in 2D and 3D problems. However, the Abstract SAM requires 
accurate gradient information within the computational domain. This example clearly illustrates 
the serious contamination of sensitivity approximations that can occur if the approximate gradients 
are inaccurate or are not sufficiently smooth. Moreover, the issue of calculating derivatives of mesh 
maps is not addressed in this ID example. Those were analytically computed and "hard-wired" into 

18 



0 0.5 1 1.5 

Figure 4.1.8: A-SAM Approximations to s(x, 1.5) 

•N,K = 03 
-N,K = 05 
■N,K = 09 
■N,K=17 
■N,K = 33 

SAM-SEM 

0.3 

0.1 

- N,K=03 
- N,K=05 

■- N,K=09 
■ - N,K=17 
- N,K=33 

Hybrid-SEM    __„. 

1.1 1.2 1.3 1.4       q   1.S 1.6 1.7 
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the computations. In practical problems, calculating these derivatives can be an extremely difficult 
task as well as a source of computational error. Both methods require accurate gradient information 
from the transformed state. In the case of the Hybrid method, this is the only major stumbling 
block to obtaining reliable sensitivity calculations. In contrast, accurate gradient information may 
not be sufficient to obtain good sensitivity approximations using the Abstract SAM method as the 
need for accurate mesh derivatives may overshadow the entire process. 
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4.2    Fast Algorithms for Computing Functional Gains 

Functional gains are kernels of feedback operators that result from distributed parameter control 
problems defined by partial and functional differential equations. These gains offer insight into 
issues such as sensor/actuator placement and controller reduction. To be practical, one must be 
able to compute these kernels for a wide variety of partial differential equations in 2 and 3 spatial 
dimensions. Standard "approximate-then-design" approaches have been very useful for small ID 
problems. However, in 2D and 3D problems, the size of the approximating systems limits this 
method as a practical computational tool. Therefore, alternative methods are needed. 

As a first step in the direction we have investigated the possibility of using "direct" approxi- 
mations of Riccati and Chandrasekhar partial differential equations that define the kernels. In this 
short note we illustrate this idea by using finite element schemes to solve these partial differential 
equations. One important observation about this direct approach is that it allows for the possi- 
bility of using parallel and adaptive computational tools. In addition, we show $hat modifications 
of "standard" finite element schemes can often improve the speed and accuracy of the old indirect 
schemes. The goal of the current note is to illustrate the basic ideas and provide some introduction 
to the theoretical and computational issues that arise in this problem area. 

4.2.1    Dirichlet Boundary Control 

The one-dimensional heat equation with Dirichlet boundary controls is defined by the initial bound- 
ary value problem: 

zt(t,x) = ezxx(t,x), 

z(t,0) = u0(t),        z(t,l) = Ul(t), 

z(0,x)  =  Z0 (X), 

(4.2.49) 

where e is the thermal diffusivity of the material. 
In order to take advantage of distributed parameter control theory, we first formulate the bound- 

ary value problem (4.2.49) as an abstract state space model. In particular, we write the problem as 
a system of the form 

z(t)    = Äz(t) + Bu(t),   ) 
> (4.2.50) 

*(0)    = z0, J 

where Ä and B are defined below. Let A be the differential operator 

[A<(>](x) = e^(x), (4.2.51) 

defined on the domain V{A) = H&(0,1) n H2(0,1), and let D denote the Dirichlet map D : l2 -> 
L2(0,1) given by 

[Du](x) = (l-x)u0 + xui. (4.2.52) 

The operator Ä : L2(0,1) ->• [V(A*)]' is the lifting of A to L2(0,1) defined by 

[i/](V0  = </,A»  = e / f(xW(x)dx, (4.2.53) 
Jo 

for each $ G V(A*) = H^(0,1) n#2(0,1). Finally, the input operator B : E2 ->• [V(A*)]' is given by 

B = -ÄD. (4.2.54) 
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The adjoint of B is usually easier to represent than the operator itself; moreover, it is the adjoint 
that one needs in finite element approximations. In particular, one has 

(Bu,4>)    =    -(Du,A*4>) 

=    —el  [(1 - x)uo + xui\<t>" {x)dx 
Jo 

=    -e[(l -x)u0 +xui](f>'(x)\0 + e(ui - u0) /   <j>'(x)dx 
Jo 

=    -eUl^(l) + eGuo^(0) 

=    (u,B*ci>)R2. 

Hence, B* : V(A') -► M2 is given by B*<j> = e[(j>'(0),   -<f>'{l)]T. 
We consider a weighted LQR control problem defined by minimizing the cost function 

rOO 

•/(«(•)) =   /    {(y(t),y(t)) + (u(t)Mt))}e2atdt (4.2.55) 
Jo 

subject to the constraint (4.2.50), where y(t) = Cz(t) is a controlled output function. It is well known 
(under suitable conditions on C) that the optimal control for this problem is given by feedback of 
the form 

u(t) = Kz(t) =  -B*Ez(t), (4.2.56) 

where K is a feedback gain operator. Here, U is the (weak) solution to the algebraic Riccati equation 
(ARE) 

(Ä + aI)*U + U(Ä + al) - TIBB*U + Q = 0, (4.2.57) 

and Q = C*C. 
It is possible to show that the feedback operator K maps L2(0,1) to R2 and has the form 

K4> =   / h(Z)<f>(Z)dt, (4.2.58) 
Jo 

where the kernel h(-) belongs to L2(0,1). This kernel is called the functional gain and is useful 
in many applications. In previous research, Burns and Rubio use functional gains to optimally 
place sensors. Similar ideas have been used to construct low-order observers. A first step in both 
applications is the development of fast and accurate numerical schemes for computing h(-). This is 
the central theme of this work. 

4.2.2    Riccati Methods 

Conceptually, there are several ways to compute the functional gain. One basic approach is to 
approximate the ARE (4.2.57) and obtain an approximate Riccati operator ü^. The approximate 
feedback operator is given by 

KN = ~[B*]NJlN, (4.2.59) 

and this feedback law yields an approximation hN(-) to the functional gain h(-). 
A more direct approach is to first obtain a representation for the Riccati operator of the form 

[n$(z)  =   / p(ar,0#0de, (4.2.60) 
Jo 
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and to then solve for p(x,£). For certain systems (distributed control and Neumann boundary 
control), Lions uses the Schwartz Kernel Theorem to obtain a representation of the form (4.2.60). 
Lions' result does not apply directly to the Dirichlet boundary control problem. However, King 
extended this result to the one-dimensional case considered here. 

Theorem 4.2.1. Assume Q : L2(0,1) -> £2(0,1) is bounded. If II = II* is the unique, nonnegative- 
definite solution to the ARE (4.2.57), then H is Hilbert-Schmidt. Moreover, there exists a function 
p(x, f) such that U has the representation (4.2.60) where the kernel p(x, £) satisfies the condition: 

P(*,fl=P&*)  G  ^([0,1] x [0,1]). (4.2.61) 

In order,to apply this result, we assume that C : L2(0,1) -» R has the form 

C4>(-)  =   I c(x)(f>(x)dx, (4.2.62) 
Jo 

where c(x) 6 L2(0,1). Note that the operator Q — C*C has the form 

[Q<P](x)   =   c(x) t c{0mdZ 
Jo 

Jo 

where q(x, £) is the kernel for Q. 
The following theorem extends the results in Lions to the Dirichlet boundary control problem 

considered here. 

Theorem 4.2.2. The kernel p(x, £) of the operator U is a weak solution to the Riccati partial 
differential equation (R-PDE) 

(Ax + Ai + 2aI)p(x,Z) - Ap(O>0 JLfoO) 

+ -^p(l,Z)g£p(x,l)+q(x,0  = 0. 

In particular, p(-, •) G HQ([0, 1] x [0,1]) satisfies the boundary conditions 

p(O,0  = p(l,0  = 0,   and 

p(x,0)  = p(x,l)  = 0, 

and the symmetry condition 

P(*,0  = P(£,ar),    Var,f€(0,l). (4.2.65) 

Proof. The proof follows the same basic idea used by Lions for the case of distributed control 
with zero Dirichlet boundary conditions. Property (4.2.65) follows from II* = II; that is, 

[ILfl(x)  =   / p(x,04>(0d£ =   / pfoaMfldf = [n>](x). 
Jo Jo 

From Theorem 3.1, p(-, •) is in C1 ([0,1] x [0,1]). Suppose that, without loss of generality, p(0, £0) > 0 
for some fixed value of f0 € (0,1). Since p(0, •) € Cl{0,1), there exists a neighborhood iV0 C (0,1) 
containing f0 such that p(0,f) > 0 for all £ G JV0. It follows that 110 G V{A) and hence [110] (0) = 0 
for all <j) G L2(0,1). If <j>{x) = 1 on JV0 and 0(ar) = 0 elsewhere, then 

pty](0)  =   / p(O,0#0de =   /  p(0,0df # 0, 
Jo JNQ 
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which contradicts the equality [n^>](0) = 0.   Therefore, p(0,£) = 0 for all f € (0,1).  The other 
boundary conditions in (4.2.64) are established by using analogous arguments. 

To obtain (4.2.63), we substitute the representation of the Riccati operator into (4.2.57). Recall 
that the weak form of the ARE (4.2.57) is defined by 

(n^>iiv> + <i4V.n^) + 2a(n^I^>-<B*n^,fi*n^> + <c^,c^) = o, (4.2.66) 
for each (j>,%p € T>(A). In particular, the first term in (4.2.66) is given by 

<n«M»  =  [[I P&OtäW V'(x)dx 

=   -J f  ^p(x,tW(x)<t>(Odxd£. 

Let V = fig([0,1] x [0,1]) and define Ax : V -> V*, by 

[Axp(x,0](v(;-)) = - f f £p(x,t)-^v(x,Odxdt. 

The operator A$ is defined similarly. The term {C(j>, Cip) takes the form 

tp(x)dx 

Jo  Jo 

Finally, since p(-, •) € C^fO, 1] x [0,1]), it follows that 

(UBB*U<f>,ip)    =  (B*U<t>,B*n*il>)R2 

=   [B*f0
1p(x,04>(Od^]T[B*J0

1p(x,0^(x)dx] 

= /oJ?[£l*0,ö&l<*,0) 

Therefore, p(-, •) € V = HQ([0, 1] x [0,1]) satisfies the variational problem: Find p(-, •) G V such that 
for all v(-, -)eV 

f1  f1 d d f1  f1 d d 
~J   J   fap(x'®dx~v(x>®dxdZ~ J   J   QcP(x't)Qcv(x>OdxdZ 

+ 2a f   f p(x,Qv{x,{)dxdZ 
Jo Jo 

+ I q(x,{)v(x,0   =  0. 
Jo 

Thus, the kernel p(x,£) is a weak solution to (4.2.57).   D 
The feedback gain operator has the form 

K<j>   =    -B*U(ß 

=    -B*Qf P(x,0<f>(t)dt) ■ 
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i    i r -i (4.2.67) 
v{x^)dxd£t 



Moreover, it has been shown that B* can be moved inside the integral so that 

K<t> = f -[Bip]{x,mm- 
Jo 

Thus, the functional gain h(£) is given by 

HO = -[B*xP](x, o = [ dP(o, t)/dx,   -dP(i, o/dx f. 

4.2.3    Chandrasekhar Methods 

Chandrasekhar methods have been used to bypass the step of solving for the Riccati operator. 
Formally, the Chandrasekhar equations are defined by 

K(t)    = B*L*(t)L(t), 
(4.2.68) 

L(t)    = -L(t)[Ä + aI-BK(t)], 

with initial conditions 

K(T) = 0       and       L(T) = C. (4.2.69) 

Chandrasekhar equations have been applied to a number of distributed parameter systems. Under 
suitable conditions, one can show that K(t) ->■ K as t -* -co. For the problem considered here, the 
Riesz Representation Theorem yields a functional gain h(-) so that 

[K<t>] =   I h(x)<ß(x)dx. (4.2.70) 
Jo 

One can discretize the Chandrasekhar equations in the same manner as the discretization of 
the Riccati equations. In particular, one can construct approximations of the system and solve the 
corresponding ordinary differential equations 

KN(t)    = [B*]N[L*]N(t)LN{t), ) 
} (CE") 

LN(t)    = -LN(t)[ÄN + aI-BNKN(t)], J 

with initial conditions 

KN{T) = 0       and       LN(T)  = CN. (4.2.71) 

This approach has been used by a number of researchers. However, one loses spatial information 
that can be helpful in developing adaptive finite element methods for direct computation of h(-). A 
second approach is to derive the Chandrasekhar partial differential equations similar in spirit to the 
Riccati partial differential equation (4.2.63). 

One formulates this system of partial differential equations for the functional gain by first as- 
suming representations of the operators in the Chandrasekhar equations (4.2.68) and then proving 
the existence of these kernels. In particular, we seek kernels h(t,£) and l(t,£) such that 

K{t)4> =   f h(t,0mdt (4.2.72) 
Jo 

and 

L(t)<f> =   / l(t,0<l>(0dt, (4.2.73) 
./o 
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respectively. 
The kernels h(-, •) and l(-, •) satisfy the following Chandrasekhar partial differential equations 

(C-PDE) 

i(*,0 = f(t,fl[£*/](t,ö, ] 
> (4.2.74) 

§(*,£) = -[(A + aI)l)(t,0 + h(t,()[B*l}(t,0, J 

with initial conditions 

h(T,x)  = 0       and       l(T,x) = c(x), (4.2.75) 

where c(x) is the kernel of the operator C. Also, h(-, •) and /(•, •) satisfy the boundary conditions 

h{t,0) = h(t,l) = 0 (4.2.76) 

and 

l(t,0)  = l(t,l) = 0, (4.2.77) 

respectively. 
Note that the term B*l produced a boundary value so that (4.2.74)-(4.2.77) is a rather complex 

boundary value problem. In particular, the boundary terms B* acting on the kernel l(t, •) yields 

[B't\(t,Q = ^l(t,0),    ~l(t,l) 

The direct method involves solving (4.2.74) for h(t, •) and l(t, •), and using the fact that as t -» —oo, 
Ht>Q -* HO (the desired functional gain). To complete this program, one needs to establish 
existence and regularity of h(t,£) and Z (*,£)• m order to limit the length of this paper we do not 
address these issues here. 

4.2.4    Approximations 

We compute the functional gains by applying several finite element schemes to both approaches 
discussed above. In one case, we approximate the system (ÄN,BN,QN,RN) and solve the finite 
dimensional Riccati and Chandrasekhar equations. We also present results for direct finite element 
approximation of the Chandrasekhar partial differential equations. 

Once a finite element subspace is selected, the first approach is to build matrix representa- 
tions of the operators of the system (4.2.50) with cost function (4.2.55). In particular, we obtain 
AN « A, BN « B, CN « C and RN = R — I. These matrix representations yield approximate 
Riccati equations (or Chandrasekhar equations) which can be solved using an appropriate numerical 
algorithm. The approximate solution 11^ or KN yields an approximation hN(-) of h(-). 

We consider three finite element methods, and all methods employ piecewise linear elements. It 
is important to review these methods because the three schemes differ only in the implementation 
of the boundary conditions. 

Recall, the global basis functions are defined by the piecewise linear "hat" functions 

{{x — Xi-ij/h, Xi-i<x<Xi 
(xi+i - x)/h, Xi<x< xi+i (4.2.78) 
0, otherwise, 

where h = i/(N + 1) for i = 1,... , N, and N + 1 is the number of subintervals of (0,1). At x = 0 
and x = 1, ho(x) and h,N+\(x) are given by 

/*(*)  =  { £ (h - x)/h, 0 < x < h 
otherwise, 
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and 

lN+1 (x) -{ 
(x - XN)/h, 
0, 

XN < X < 1 
otherwise, 

respectively. 
The first method is "standard finite elements." The second method was used by Burns and Kang 

in their study of Burgers' equation and uses all N + 2 basis functions. The third method is based 
on Nitsche's approximation as discussed in Section 10.1 of Lasiecka and Triggiani. 

The standard finite element method is the most commonly discussed scheme. We find the solution 
to the problem in the subspace VQ C HQ (0,1), where VQ is the space spanned by h{(x), i = 1,... , N. 

In VQ, the matrix representation for A is AQ = (M^^SQ where MQ and SQ are the mass 
matrix and stiffness matrix, respectively. These matrices are given by 

M,N 
o    — 

4 10 
1 4   1 
0 1   4 

0 0   0 

cN   _   e 
ö0     ~   T 

-2 10 
1 -2     1 
0 1     -2 

0 0      0 

0 
0 
0 

-2 

The approximation BQ  has the representation (MN) 1
BQ  where 

i>N _   e 

B°   ~  h 

f* 1 0 1 
0 0 

0 0 
0 1 

(4.2.79) 

The remaining finite element schemes attempt to adjust for the fact that the solutions are not 
zero on the boundaries. Bramble, et. al., consider these kinds of subspaces because they give optimal 
convergence rates for nonhomogeneous boundary conditions. Burns and Kang employ all iV+2 basis 
functions and hence project the problem onto the space Vh spanned by hi(x), i = 0,1,... ,N + 1. 

The resulting matrix representations for 4^ and BN are of size (N + 2) x (N + 2) and (N + 
2) x 2, respectively. Thus, .4^ has the representation (MN)~lSN and BN has the representation 
(MN)~lBN where 

MN = 

2 10 
1 4    1 
0 1   4 

0 0   0 

SN = 

' -1 0 0     •• •     0 
1 -2 1     •• •     0 

e 0 1 -2   •• •     0 
h 

0 0 0     •• •    -1 

and BN is the (N + 2) x 2 analog of (4.2.79). 
Lasiecka and Triggiani suggested that Nitsche's approximation would be useful in the LQR 

problem because of improved accuracy of the Dirichlet boundary conditions. This scheme produces 
optimal convergence rates in the solution of the open-loop system. As we shall see below, the Nitsche 
scheme produces excellent approximations to the functional gains. The Nitsche method begins with 
the finite element scheme used by Burns and Kang. Nitsche's approximation Aß of the A operator 
is defined by 

(A$z»,4F) = a{zN,<t>N) - (±zN,4>N)r - (zN,^N)r -ßh~HzN,<t>")v, (4.2.80) 
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where ß > 0 is sufficiently large, T is the boundary of the domain and a(-, •) is the bilinear form 
such that 

a((f>,ip) = - f 4>'(xW(x)di 
Jo 

Rearranging the terms of Nitsche's approximation Aß and using the fact that 2^(0) = UQ and 
zN(l) = ui, the only matrices that are changed are the stiffness and the control matrices. The 
resulting stiffness matrix is the (N + 2) x (N + 2) matrix 

S? = % 

and the control matrix is given by 

-1-/3 
1 
0 

0 
1 

0      0 

0 
0 
0 

-1-/3 

(4.2.81) 

Bß 

1 + ß 
0 

0 
0 

0 
0 

0 
1+ß 

(4.2.82) 

Again, Q is approximated by projecting onto Vh producing the approximate ARE defined by 

{AN + aIN)*IlN + nN{AN + aIN)-UNBN (BN)*IlN+ QN = 0, (4.2.83) 

It is clear that one can generate finite element approximations to the Riccati and Chandrasekhar 
partial differential equations by projecting these systems onto the various finite element spaces. In 
order to conserve space, we focus on the Chandrasekhar PDE (4.2.74)-(4.2.77). We turn now to 
numerical results that compare the schemes and methods mentioned in this section. 

4.2.5    Numerical Results 

In this section we present numerical comparisons for the methods described above. Two examples 
are presented. The first example compares the results obtained by applying the indirect method. We 
approximate the functional gains using the three finite element schemes mentioned in the previous 
section via the approximate ARE (4.2.83). 

The second example focuses on the Chandrasekhar PDE system. We compare the standard finite 
element scheme with Nitsche's method. In particular, we use the standard finite element scheme to 
solve the Chandrasekhar PDE's (4.2.74)-(4.2.77), and compare this result to the Nitsche solution of 
the ARE (4.2.57). 
Example 1. In this example, we take Q = I in (4.2.55), and set e = 1/60, a = 0.3. Figures 
4.2.10 and 4.2.11 show plots of the approximate functional gains for all three methods. Figure 4.2.10 
corresponds to control at x = 0 and Figure 4.2.11 contains plots for the functional gains for control 
at x = 1. Observe that at N = 8, the Nitsche scheme "corrects" the errors at the boundary that 
result from a direct application of the Burns-Kang scheme. The "converged" solution is represented 
by the N = 128 standard finite element solution. The closed-loop response is plotted in Figure 
4.2.12. Figure 4.2.13 provides comparison of the closed-loop trajectories at time t = 10 seconds. 
Note that the Nitsche's scheme provides more accurate responses than the other methods. This 
observation has potential applications to controller reduction schemes. 
Example 2. In this example, c(x) is defined by 

c(x) _  / 0.5, 0.6 < x < 0.8 
otherwise, 
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and e = 0.1, a = 0. The standard finite element scheme is applied to the Chandrasekhar PDE 
system (4.2.74)-(4.2.77). Nitsche's scheme is used to compute hN(x) via the ARE (4.2.83). Figures 
4.2.14 and 4.2.15 show plots of the approximate functional gains for both schemes. The "con- 
verged" solution is represented by the same scheme used in the previous example. Note that both 
schemes produce excellent approximations to the functional gains. It is important to note that the 
convergence in space (N -»• oo) and time (t -*■ -oo) of hN(t,£) to h(£) is "fast enough" so that 
approximations of the Chandrasekhar PDE's are competitive with the other indirect approaches. 
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Figure 4.2.10: Functional Gain at x = 0, N = 8. 
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Figure 4.2.11: Functional Gain at x = 1, N = 8. 
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Figure 4.2.12: Solution of Closed-Loop System, t = 0 to t = 20. 

4.2.6    Conclusion and Future Research 

Although the numerical results presented here axe not sufficient to provide conclusive information 
on the most efficient method for approximating functional gains, they do provide insight into these 
matters and they demonstrate the feasibility of the various schemes. 

It is interesting to note that Nitsche's approximation produces excellent approximations to the 
functional gains. Hence, accuracy is improved by use of the Nitsche scheme. However, the Nitsche 
scheme was considerably slower than the standard finite element method. This was especially notice- 
able as N got larger. This is an issue that should be explored. In addition, the improved accuracy 
obtained by Nitsche's scheme was not uniform in N. In some cases, the standard finite element 
scheme was better at small N. Consequently, the tradeoffs between speed and accuracy are not yet 
settled. 

Indirect methods (approximate first) have been useful in dealing with ID and 2D problems. 
However, these indirect methods do not take advantage of the structure of the problem and do 
not allow for adaptive finite element refinements. The Riccati and Chandrasekhar PDE's offer the 
potential for improvements in these areas. These issues need to be explored. 
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4.3     Significance and Potential Application to Air Force Prob- 
lems 

Hybrid Transformation Methods for Sensitivity Computations - Accurate sensitivity calcu- 
lations play an important role in the analysis and optimization of engineering systems. Sensitivities 
can be used to compute gradients in optimization-based design. We focused on variational methods 
for computing state sensitivities. These schemes make use of sensitivity equation methods. However, 
there are a variety of ways to implement sensitivity equation methods, and these variations yield 
algorithms with different convergence properties. We considered two specific methods. The first is 
based on transforming the state equation to a fixed computational domain and then deriving its 
sensitivity equation. Once the state and sensitivity systems are solved, the solutions are mapped 
back to the physical domain. The second approach transforms both state and sensitivity equations, 
solves the transformed equations and maps these solutions back to the physical domain. There are 
benefits and drawbacks to each method. Indeed, it is not always obvious which scheme is best for a 
given problem. Many questions needed to be addressed before a complete theory could be developed. 

Each of the methods present computational challenges. The Hybrid SEM requires gradient in- 
formation along the boundary of the computational domain. This information becomes critical to 
accurate sensitivity calculations. However, other SEM often require accurate gradient information 
within the computational domain. This work clearly illustrated that serious contamination of sen- 
sitivity approximations can occur if the approximate spatial gradients are inaccurate or are not 
sufficiently smooth. Moreover, the Hybrid SEM avoids the need to calculate derivatives of mesh 
maps. In the case of the Hybrid method, accurate gradients is the only major stumbling block to 
obtaining reliable sensitivity calculations. In contrast, accurate gradient information may not be 
sufficient to obtain good sensitivity approximations using the other SAM methods, since the need 
for accurate mesh derivatives may overshadow the entire process. This work provided, for the first 
time, an understanding of the role that spatial smoothness plays in developing accurate numerical 
methods for sensitivity computations. 

These results will play an important role in developing fast and accurate sensitivity analysis tools 
with Air Force applications such as wing-body design optimization, combustion control and COIL 
lasers. 

Fast Algorithms for Computing Functional Gains - Functional gains are kernels of feedback 
operators that result from distributed parameter control problems defined by partial and functional 
differential equations. These gains offer insight into issues such as sensor/actuator placement and 
controller reduction. To be practical, one must be able to compute these kernels for a wide variety 
of partial differential equations in 2 and 3 spatial dimensions. Standard "approximate-then-design" 
approaches have been very useful for small ID problems. However, in 2D and 3D problems, the 
size of the approximating systems limits this method as a practical computational tool. Therefore, 
alternative methods were needed. 

As a first step in the direction we developed "direct" approximations of Riccati and Chan- 
drasekhar partial differential equations that define these kernels. This direct approach allows for 
the possibility of using parallel and adaptive computational tools. In addition, we established that 
by modifying "standard" finite element schemes one can improve the speed and accuracy of the old 
indirect schemes. In particular, so called "Nitsche methods" produces greatly improved approxi- 
mations to the functional gains. Although the standard Nitsche scheme improved accuracy, it was 
considerably slower than other finite element methods. This was especially noticeable as the number 
of elements grew. Riccati and Chandrasekhar PDE's offers the potential for improvements in this 
areas. 

These methods have already proven to be useful in the control of 2D thermal processes and when 
extended to Navier-Stokes equations will provide the basic tools needed to accomplish practical 
sensor/actuator placement and controller reduction for flow control. In addition, these tools will be 
useful in several other DOD applications; including the design and control of materials manufacturing 
processes and control of combustion. 
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